Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cai-Feng Ding, ${ }^{a}$ Shu-Sheng Zhang, ${ }^{\text {b }} *$ Xue-Mei Li, ${ }^{\text {b }}$ Hong Xu ${ }^{\text {a }}$ and Ping-Kai Ouyang ${ }^{\text {a }}$

${ }^{\text {a }}$ College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210093 Nanjing, Jiangsu, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 266042 Qingdao, Shandong, People's Republic of China

Correspondence e-mail:
zhangshush@public.qd.sd.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.078$
$w R$ factor $=0.249$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Methoxycarbonyl-2-methyl-1H-benzimid-azol-3-ium nitrate hemihydrate

The title compound, $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}^{+} \cdot \mathrm{NO}_{3}{ }^{-} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, crystallizes in a monoclinic unit cell with two benzimidazolium cations, two $\mathrm{NO}_{3}{ }^{-}$anions and one water molecule in the asymmetric unit. Intermolecular hydrogen bonds link the cations, anions and water molecules into two-dimensional layers.

Comment

Benzimidazole derivatives and their metal complexes are of considerable interest due to their biological activities (Matthews et al., 1998), and are widely used for medicaments (David et al., 1993). Benzimidazole derivatives are also used as metal antiseptics, photosensitizers, surfactants, fluorescence whitening agents and photosensitive dyes (Matthews et al., 1996; Raban et al., 1985). In this paper, we report the synthesis and crystal structure of the title compound, (I).

(I)

The asymmetric unit of (I) contains two crystallographically independent benzimidazolium cations A and B, two $\mathrm{NO}_{3}{ }^{-}$ anions and one water molecule (Fig. 1). The cations are parallel to each other, with a dihedral angle of $2.5(2)^{\circ}$ between the mean planes of the two benzimidazole moieties.

Figure 1
View of the asymmetric unit of (I), showing 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Received 16 November 2004 Accepted 19 November 2004 Online 27 November 2004

Figure 2
Packing diagram of (I), showing the layers. Dashed lines denote shortcontact interactions.

Compound (I) is a hemihydrated nitrate salt.
The bond lengths in the benzimidazole skeleton (Table 1) show a character intermediate between single and double bonds, implying a highly π-conjugated delocalization effect, comparable with those observed in other benzimidazole derivatives (Bei et al., 2004; Ozbey et al., 1998). Each cation is almost planar, with dihedral angles of 1.6 (3) and $0.6(3)^{\circ}$ between the benzene ring and the five-membered ring in A and B, respectively.

Within the asymmetric unit, the water molecule is linked to the cation and anion, acting as a hydrogen-bond donor via $\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4$ and $\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 10$ interactions (Table 2). In the crystal packing, the cations, anions and water molecules are connected into two-dimensional layers, which are stacked along the c axis (Fig. 2).

Experimental

A solution of ethyl 3,4-diaminobenzoate ($1 \mathrm{~g}, 6 \mathrm{mmol}$) in acetic acid $(30 \mathrm{ml})$ was heated under reflux for 10 h . The mixture was then poured into a beaker containing 50 ml ice water, yielding quantities of precipitate. After filtration, the residue was dissolved in ethanol $(30 \mathrm{ml})$ and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 9 \mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The mixture was stirred at 351 K for 2 h . The yellow solution was left to stand at room temperature, and single crystals of the title compound were obtained unexpectedly.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{NO}_{3}-\cdot 0.5 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=262.23 \\
& \text { Monoclinic, } P 2_{j} / c \\
& a=7.9107(6) \AA \\
& b=21.5276(17) \AA \\
& c=14.2691(11) \AA \\
& \beta=94.573(2)^{\circ} \\
& V=242.3(3) \AA^{3} \\
& Z=8
\end{aligned}
$$

Data collection
Bruker SMART 1000 CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.977, T_{\max }=0.989$
12579 measured reflections

Refinement

Refinement on F^{2}
4284 independent reflections
1703 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.056$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-5 \rightarrow 9$
$k=-25 \rightarrow 25$
$l=-16 \rightarrow 15$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
H-atom parameters constrained
$w R\left(F^{2}\right)=0.249$
$S=0.97$
4284 reflections
334 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1161 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.32 \mathrm{e}^{\circ} \mathrm{A}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

$\mathrm{O} 2-\mathrm{C} 9$	$1.354(7)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.321(6)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.474(6)$	$\mathrm{N} 3-\mathrm{C} 12$	$1.327(6)$
$\mathrm{O} 4-\mathrm{C} 19$	$1.329(6)$	$\mathrm{N} 3-\mathrm{C} 13$	$1.384(6)$
$\mathrm{O} 4-\mathrm{C} 20$	$1.455(6)$	$\mathrm{N} 4-\mathrm{C} 12$	$1.321(5)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.318(6)$	$\mathrm{N} 4-\mathrm{C} 18$	$1.383(6)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.385(6)$		
C2-N1-C3	$110.1(5)$	$\mathrm{C} 8-\mathrm{C} 3-\mathrm{N} 1$	$105.8(5)$
C2-N2-C8	$109.4(5)$	$\mathrm{C} 3-\mathrm{C} 8-\mathrm{N} 2$	$106.1(5)$
$\mathrm{C} 12-\mathrm{N} 3-\mathrm{C} 13$	$110.4(4)$	$\mathrm{N} 4-\mathrm{C} 12-\mathrm{N} 3$	$107.8(5)$
$\mathrm{C} 12-\mathrm{N} 4-\mathrm{C} 18$	$110.2(4)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 18$	$122.0(5)$
N1-C2-N2	$108.7(5)$	$\mathrm{N} 4-\mathrm{C} 18-\mathrm{C} 13$	$106.2(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 6$	0.86	2.34	$3.040(6)$	138
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 7$	0.86	2.07	$2.906(6)$	163
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 8^{\mathrm{i}}$	0.86	2.36	$3.120(6)$	148
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 9^{\mathrm{i}}$	0.86	2.00	$2.804(7)$	154
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 5^{\mathrm{ii}}$	0.86	2.43	$3.135(6)$	139
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 7^{\mathrm{ii}}$	0.86	2.04	$2.868(5)$	160
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 8$	0.86	2.01	$2.839(6)$	163
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{O} 10$	0.86	2.40	$3.090(6)$	138
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 4$	0.85	2.43	$3.28(2)$	173
$\mathrm{O} 1 W-\mathrm{H} 2 W 1 \cdots \mathrm{O} 10$	0.85	2.15	$2.72(2)$	124
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{O}^{\mathrm{i}}$	0.96	2.55	$3.350(8)$	140
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.93	2.49	$3.140(7)$	127
$\mathrm{C} 10-\mathrm{H} 10 A \cdots \mathrm{O} 1 W^{\mathrm{ii}}$	0.96	2.47	$3.42(2)$	173
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.56	$3.359(7)$	145
$\mathrm{C} 17-\mathrm{H} 17 A \cdots \mathrm{O} 10$	0.93	2.55	$3.258(7)$	133

Symmetry codes: (i) $x-1, y, z$; (ii) $1-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$.

After their location in a difference Fourier map, all H atoms were positioned geometrically $(\mathrm{O}-\mathrm{H}=0.95, \mathrm{~N}-\mathrm{H}=0.86$ and $\mathrm{C}-\mathrm{H}=$ $0.93-0.96 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

This project was supported by the National Natural Science Foundation of China (No. 20275020 and 20475030) and the

organic papers

Outstanding Adult-Young Scientific Research Encouraging Foundation of Shandong Province (No. 03BS081).

References

Bei, F. L., Chen, H. Q., Yang, X. J., Lu, L. D. \& Wang, X. (2004). Chin. J. Org. Chem. 24, 300-305.
David, S. S., Abhijit, M. \& David, M. P. (1993). Chem. Rev. 93, 2295-2316
Matthews, C. J., Clegg, W., Elsegood, M. R. J., Leese, T. A., Thorp, D., Thornton, P. \& Lockhart, J. C. (1996). J. Chem. Soc. Dalton Trans. pp. 15311538.

Matthews, C. J., Clegg, W., Heath, S. L., Martin, N. C. \& Hill, M. N. S. (1998). Inorg. Chem. 37, 199-207.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Ozbey, S., Ide, S. \& Kendi, E. (1998). J. Mol. Struct. 442, 23-30.
Raban, M., Chang, H., Craine, L. \& Hortelano, E. (1985). J. Org. Chem. 50, 2205-2210.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

